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Abstract. Knowledge base completion aims to infer new relations from
existing information. In this paper, we propose path-augmented TransR
(PTransR) model to improve the accuracy of link prediction. In our app-
roach, we build PTransR based on TransR, which is the best one-hop
model at present. Then we regularize TransR with information of rela-
tion paths. In our experiment, we evaluate PTransR on the task of entity
prediction. Experimental results show that PTransR outperforms previ-
ous models.
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1 Introduction

Large scale knowledge bases such as WordNet [1] and FreeBase [2] are important
resources for natural language processing (NLP) applications like web search-
ing [3], automatic question answering systems [4], and even medical informat-
ics [5]. Formally, a knowledge base is a dataset containing triples of two entities
and their relation. A triplet (h, r, t), for example, indicates that the head entity
h and the tail entity t have a relation r. Despite massive triplets a knowledge
base contains, evidence in the literature suggests that existing knowledge bases
are far from complete [6,7].

In the past decades, researchers have proposed various methods to auto-
matically construct or populate knowledge bases from plain texts [6,8], semi-
structured data on the Web [9,10], etc. Recently, studies have shown that embed-
ding the entities and relations of a knowledge base into a continuous vector space
is an effective way to integrate the global information in the existing knowledge
base and to predict missing triplets without using external resources (i.e., addi-
tional text or tables) [7,11–14].

Bordes et al. [11] propose the TransE approach, which translates entities’
embeddings by that of a relation, to model knowledge bases. That is to say, the
relation between two entities can be represented as a vector offset, similar to
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word analogy tasks for word embeddings [15] and sentence relation classification
by sentence embeddings [16]. For one-to-many, many-to-one, and many-to-many
relations, however, such straightforward vector offset does not make much sense.
Considering a head entity China and the country-city relation, we can think
of multiple plausible tail entities like Beijing, Tianjin, and Shanghai. These
entities cannot be captured at the same time by translating the head entity
and relation embeddings. Therefore, researchers propose to map entities to a
new space where embedding translation is computed, resulting in TransH [7],
TransR [12], and other variants. Among the above approaches, TransR achieves
the highest performance on established benchmarks.

One shortcoming of the above methods is that only the direct relation (i.e.,
one-hop relation) between two entities is considered. In a knowledge base, some
entities and relations only appear a few times; they suffer from the problem
of data sparsity during training. Fortunately, the problem can be alleviated
by using multi-hop information in a knowledge base. Guu et al. [13] present
a random walk approach to sample entities with composited relations. Likewise,
Lin et al. [14] propose a path-augmenting approach that uses multi-hop relations
between two entities to regularize the direct relation between the same entity
pair. Their experiments show the path-augmented TransE model (denoted as
PTransE) outperforms the one-hop TransE model.

In this paper, we are curious whether we can combine the worlds, i.e., whether
the path-augmenting technique is also useful for a better one-hop “base” model.
Therefore, we propose to leverage TransR [12] as our cornerstone, but enhance it
with path information as in [14], resulting a new variant, PTransR. We evaluate
our model on the FreeBase dataset. Experimental results show that modeling
relation paths is beneficial to the base model TransR, and that PTransR also
outperforms PTransE in entity prediction. In this way, we achieve the state-of-
the-art link prediction performance in the category that uses only the knowledge
base itself (i.e., without additional textual information).

The rest of this paper is organized as follows. In Sect. 2, we describe the
base model TransR and then discuss the path-augmented variant PTransR. In
Sect. 3, we compare our PTransR model with other baselines in an entity pre-
diction experiment; we also have in-depth analysis regarding different groups
of relations, namely 1-to-1, 1-to-n, n-to-1, and n-to-n relations. In Sect. 4, we
briefly review previous work in information extraction. Finally, we conclude our
paper in Sect. 5.

2 Our Approach

In this section, we present our PTransR model in detail. In Subsect. 2.1, we
introduce the TransE model and explain how TransR overcomes the weakness of
TransE. Then, we augment TransR model with path information in Subsect. 2.2.
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2.1 Base Model: TransR

As said in Sect. 1, embedding entities and their relation into vector spaces can
effectively exploit internal structures that a knowledge base contains, and thus
is helpful in predicting missing triplets without using additional texts.

The first model in such research direction is TransE [11]. It embeds enti-
ties and their relation in a same low-dimensional vector space; the two entities’
embeddings are translated by a relation embedding, which can be viewed as an
offset vector. In other words, for a triplet (h, r, t), we would like h+r ≈ t. (Here,
bold letters refer to the embeddings of head/tail entities and the relation.) The
plausibility of a triplet (h, r, t) is then evaluated by a scoring function

fr(h, t) � ‖h + r − t‖, (1)

where ‖ · ‖ denotes either �1-norm or �2-norm. fr(h, t) is expected to be small if
(h, r, t) is a positive triplet.

To further analyze the performance of TransE, Bordes et al. [11] divide rela-
tions into four groups, namely 1-to-1, 1-to-n, n-to-1, and n-to-n, according to
the mapping properties of a relation. For example, country-city is a 1-to-n
relation, because a country may have multiple cities, but a city belongs to only
one country. The weakness of TransE is that entity embeddings on the many
side tend to be close to each other, which is the result of expecting fr(h, t) to
be small for all positive triplets. Therefore, it is hard for TransE to distinguish
among the entities which are on the many side.

To solve the above problem, TransR [12] embeds entities and relations into
two separate spaces: the entity space and the relation space. It uses relation-
specific matrices Mr to map an entity from its own space to the relation space,
given by hr = Mrh and tr = Mrt, so that translation can be accomplished by
regarding relation embedding as an offset vector, i.e., hr + r ≈ tr. To achieve
this goal, TransR defines the scoring function as

fr(h, t) � ‖Mrh + r − Mrt‖22. (2)

To train the model, we shall generate negative samples and use the hinge
loss. The overall cost function of the TransR model is

LTransR =
∑

(h,r,t)∈S

∑

(h′,r,t′)∈S′
max

{
0, γ + fr(h, t) − fr(h′, t′)

}
, (3)

where negative samples are constructed as

S′ = {(h′, r, t)|(h′, r, t) /∈ S}
⋃

{(h, r, t′)|(h, r, t′) /∈ S} .

Results in link prediction show that TransR outperforms other models on
established benchmarks, indicating TransR is the best one-hop model at present.
However, TransR fails to utilize the rich path information, which will be dealt
with in the following subsection.
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Fig. 1. An illustration of the PTransR model.

2.2 Path-Augmented TransR: PTransR

Using path information to regularize one-hop models can be beneficial [13,14].
Here, we adopt the path modeling method in PTransE, and extend the TransR
model to path-augmented TransR (denoted as PTransR) (Fig. 1).

A relation path is a set of relations that connect head entity and tail entity in
succession. An n-hop relation path from h to t is defined as p = {r1, r2, · · · , rn},
satisfying h

r1−→ e1
r2−→ · · · rn−→ t. If n = 1, then p = r1 is a direct (1-hop)

relation. To enhance TransR model with multi-hop information, we follow the
treatment in PTransE [14] and represent a relation path as an embedding vector
by additive compositional methods. Then such multi-hop information is used
to regularize one-hop direct relation between the same entity pair. A reliability
score is computed to address the strength of regularization by a particular path.
The details are described as follows.

To compute the representation of a relation path p that composites primitive
relations r1, r2, · · · , rn, i.e., p = r1 ◦r2 ◦· · ·◦rn (where ◦ denotes the composition
operation), we add the embeddings of these primitive relations, given by

p = r1 + r2 + · · · + rn, (4)

where bold letters denote the vector of a relation or a path.
The choice of addition as the composition operation is reasonable, because

the vector representation of path p should be close to that of direct relation r if it
is likely to infer r from p. For example, the representation of path

father−−−−→ mother−−−−−→
is expected to be close to that of direct relation

grandmother−−−−−−−−→.
Although a knowledge base may contain a variety of relation paths between

two entities, not every path is equally useful for inferring direct relations. For
example, the relation path John

friend−−−−→ Tim
gender−−−−→ male gives little contribu-

tion to inferring the gender of John.
To evaluate the reliability of a path, PTransE uses a path-constraint resource

algorithm (PCRA) [14], which is also applied in our approach. This algorithm
first assigns a certain amount of resource (i.e., a value of 1) to the head entity
h; then each node distributes resource evenly to its direct child nodes (Fig. 2).
The value of p along an entity pair h, t is denoted as v(p|h, t).
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Fig. 2. An illustration of the path-constraint resource algorithm (PCRA).

However, v(p|h, t) alone does not embody the relatedness between a relation
path p and a direct relation r. To address this problem, a relatedness measure is
defined as Pr(r|p) = Pr(r, p)/Pr(p), where Pr(p) is the sum of v(p|h, t) for every
training triplet (h, r, t) with p as a relation path from h to t. Pr(r, p) is the sum
of v(p|h, t) for every training triplet (h, r, t) with r being a direct relation and
p as a relation path. The overall reliability of a path p on a triplet (h, r, t) is
given by

R(p|h, r, t) = Pr(r|p) · v(p|h, t). (5)

PTransR’s scoring function fPTransR(h, r, t) is composed of two scores:

fPTransR(h, r, t) = E(h, r, t) + E(P|h, r, t). (6)

E(h, r, t) is the same as the scoring function of TransR (Eq. 2) which evalu-
ates the plausibility of (h, r, t) without considering relation paths from h to t.
Following PTransE, E(P|h, r, t) is defined as

E(P|h, r, t) =
1
Z

∑

p∈P

E(p|h, r, t), (7)

E(p|h, r, t) = R(p|h, r, t)‖p − r‖22 = Pr(r|p)v(p|h, t)‖p − r‖22, (8)

where Z is a normalizing factor for R(p|h, t) and P is the set of all paths from
h to t. E(P|h, r, t) evaluates the plausibility of (h, r, t) with the consideration of
relation paths from h to t. The overall loss function of PTransR is

LPTransR =
∑

(h,r,t)∈S

[L(h, r, t) +
1
Z

∑

p∈P

L(p|h, r, t)], (9)

L(h, r, t) =
∑

(h′,r,t′)/∈S

max
{
0, γ1 + E(h, r, t) − E(h′, r, t′)

}
, (10)

L(p|h, r, t) =
∑

(h,r′,t)/∈S

max
{
0, γ2 + E(p|h, r, t) − E(p|h, r′, t)

}
, (11)

PTransR learns entity and relation embeddings by minimizing LPTransR.
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2.3 Training Details

We train PTransR by mainly following PTransE [14].

Initial Vectors and Matrices. Following TransR, initial vectors and matrices
for PTransR are obtained from TransE. The configuration of TransE is: margin
γ = 1, learning rate α = 0.01, method = unif, and epoch = 1000.

Negative Samples. We sample negative triplets by randomly replacing head
entity h or tail entity t or relation r. For example, (h, r, t)-derived negative
triplets are (h′, r, t), (h, r, t′), and (h, r′, t), where (h, r, t) ∈ S and (h′, r, t),
(h, r′, t), (h, r, t′)/∈ S.

Vector Representation Constraints. Following TransR, to regularize the
representations, we impose the following constraints on the entity and relation
embeddings.

‖h ‖ = ‖ t ‖ = ‖ r ‖ = 1, ‖Mrh ‖ ≤ 1, ‖Mrt ‖ ≤ 1. (12)

Path Selection. PTranE restricts the length of path to less than 3. Its results
show that 3-hop paths do not make significant improvement, compared to 2-hop
paths. For efficiency, we only consider 2-hop relation paths.

Inverse Relation. As inverse relations sometimes contain useful information,
for each training triplet (h, r, t), (t, r−1, h) is added to the training set.

3 Evaluation

In this section, we present results of our experiment. We first briefly introduce
the dataset and the task of entity prediction. Then we show the experimental
results and analyze the performance.

3.1 Dataset

FB15k is a commonly used dataset in knowledge base completion. Table 1 shows
statistics of FB15k. FB15k dataset contains factual information in our world,
e.g., location/country/language spoken. As FB15k has various kinds of rela-
tions, it is suitable for the evaluation of PTransR. Therefore, we choose FB15k
as our experimental dataset.

Table 1. Statistics of the FB15k dataset.

Dataset Relation Entity Train Valid Test

FB15k 1,345 14,951 483,142 50,000 59,071
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3.2 Experimental Settings

We evaluate PtransR on the task of entity prediction. Entity prediction aims at
predicting the missing entity in an incomplete triplet, i.e., predicting h given r
and t, or predicting t given h and r. Following the settings in TransE, for a triplet
(h, r, t), we replace the head entity h with every entity e and compute the score
of (e, r, t). Entity candidates are ranked according to their scores. We repeat the
same process to predict the tail entity t. Then we use the two metrics in TransE
to evaluate the performance: MeanRank (average rank of the expected entity)
and Hits@10 (proportion of triplets whose head/tail entity is among top-10 in
the ranking). However, there could be several entities that are plausible for the
same incomplete triplet. The plausible entities which are ranked before h or t may
cause underestimation of performance. One solution is to remove other plausible
entities in the ranking, which is referred to as a filter. In comparison, the results
without removing other plausible entities are referred to as raw. A good model
should achieve low MeanRank and high Hits@10.

To utilize the inverse relation, instead of only using the score fPTransR(h, r, t),
we use the sum of fPTransR(h, r, t) and fPTransR(t, r−1, h) to rank the candidates,
i.e.,

score(h, r, t) = fPTransR(h, r, t) + fPTransR(t, r−1, h). (13)

To accelerate the testing process, we use the reranking method in PTransE.
We first rank all candidates according to their scores which are computed by the
scoring function of TransR, which means that path information is not considered
in the first ranking. Then we rerank the top-500 candidates according to the
scores computed by the scoring function mentioned above, namely score(h, r, t).

The configurations for experiments are given as follows: learning rate α for
SGD among {0.01, 0.001, 0.0001}, dimension of entity space R

k and relation
space R

d between {20, 50}, γ1 and γ2 among {1, 2, 4}, batch size B among
{480, 960, 4800}. The optimal configuration on valid set is α = 0.001, k = d = 50,
γ1 = γ2 = 1, and B = 4800. The training process is limited to less than 500
epochs.

3.3 Overall Performance

Table 2 shows the experimental results. By comparing the results of PTransR
with the results of previous models, we have the following main observations:
(1) PTransR outperforms TransR on every metric to a large margin, which shows
that path-augmented model can achieve better results than one-hop base model.
(2) PTransR outperforms PTransE in MeanRank and is comparable to PTransE
in Hits@10, which shows that path-augmented model with a better one-hop base
model can achieve better performance.

Table 3 presents the performance on the four relation categories 1-to-1,
1-to-n, n-to-1, and n-to-n, with Hits@10(filter) as the metric. From Table 3, we
find that, compared to TransR, PTransR shows consistent improvement on all
four relation categories. Also, compared to PTransE, PTransR performs better
on 1-to-1, 1-to-n and n-to-1 relations, especially on 1-to-n and n-to-1.
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Table 2. Evaluation results of entity prediction on FB15k.

Metric Mean rank Hits@10(%)

Raw Filter Raw Filter

Unstructured (Bordes et al. 2012) 1, 074 979 4.5 6.3

RESCAL (Nickel et al. 2011) 828 683 28.4 44.1

SE (Bordes et al. 2011) 273 162 28.8 39.8

SME (linear) (Bordes et al. 2012) 274 154 30.7 40.8

SME (bilinear) (Bordes et al. 2012) 284 158 31.3 41.3

LFM (Jenatton et al. 2012) 283 164 26.0 33.1

TransE (Bordes et al. 2013) 243 125 34.9 47.1

TransH (unif) (Wang et al. 2014) 211 84 42.5 58.5

TransH (bern) (Wang et al. 2014) 212 87 45.7 64.4

TransR (unif) (Lin et al. 2015) 226 78 43.8 65.5

TransR (bern) (Lin et al. 2015) 198 77 48.2 68.7

CTransR (unif) (Lin et al. 2015) 233 82 44.0 66.3

CTransR (bern) (Lin et al. 2015) 199 75 48.4 70.2

PTransE (2-hop) (Lin et al. 2015) 200 54 51.8 83.4

PTransE (3-hop) (Lin et al. 2015) 207 58 51.4 84.6

PTransR (2-hop) 171 47 53.0 84.3

Table 3. Evaluation results of different relation catogories.

Tasks Predicting head (Hits@10) Predicting tail (Hits@10)

Relation category 1-to-1 1-to-N N-to-1 N-to-N 1-to-1 1-to-N N-to-1 N-to-N

Unstructured 34.5 2.5 6.1 6.6 34.3 4.2 1.9 6.6

SE 35.6 62.6 17.2 37.5 34.9 14.6 68.3 41.3

SME (linear) 35.1 53.7 19.0 40.3 32.7 14.9 61.6 43.3

SME (bilinear) 30.9 69.6 19.9 38.6 28.2 13.1 76.0 41.8

TransE 43.7 65.7 18.2 47.2 43.7 19.7 66.7 50.0

TransH (unif) 66.7 81.7 30.2 57.4 63.7 30.1 83.2 60.8

TransH (bern) 66.8 87.6 28.7 64.5 65.5 39.8 83.3 67.2

TransR (unif) 76.9 77.9 38.1 66.9 76.2 38.4 76.2 69.1

TransR (bern) 78.8 89.2 34.1 69.2 79.2 37.4 90.4 72.1

CTransR (unif) 78.6 77.8 36.4 68.0 77.4 37.8 78.0 70.3

CTransR (bern) 81.5 89.0 34.7 71.2 80.8 38.6 90.1 73.8

PTransE (2-hop) 91.0 92.8 60.9 83.8 91.2 74.0 88.9 86.4

PTransE (3-hop) 90.1 92.0 58.7 86.1 90.7 70.7 87.5 88.7

PTransR (2-hop) 91.4 93.4 65.5 84.2 91.2 74.5 91.8 86.8
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3.4 In-Depth Analysis and Discussion

As pointed out in Sect. 1, despite the massive train set of FB15k, some relations
cannot be properly captured due to the problem of data sparsity. We separate
relations into five groups according to their frequency in the train set, as shown in
Table 4. MeanRank(raw) of TransR and PTransR is compared in Table 4 and the
improvement from TransR to PTransR is presented. First of all, we see PTransR
outperforms TransR in all five groups of relations. Second, as relation frequency
decreases, the improvement goes up, which means that path information is useful
for dealing with the problem of data sparsity.

Table 4. Evaluation results concerning relations of different frequency in train set.

Relation frequency in train set 1–3 4–15 16–50 51–300 >300

Relation number 291 305 243 271 235

MeanRank of TransR 159 98 54 81 202

MeanRank of PTransR 85 63 41 63 182

Improvement (%) 46.5 35.7 24.1 22.2 9.9

4 Related Work

Relation extraction is an important research topic in NLP. It can be roughly
divided into two categories based on the source of information.

Text-based approaches extraction entities and/or relations from plain text.
For example, Hearst [17] uses “is a|an” pattern to extract hyponymy relations.
Banko et al. [6] proposes to extract open-domain relations from the Web. Fully
supervised relation extraction, which classify two marked entities into several
predefined relations, has become a hot research arena in the past several years
[8,18,19].

Knowledge base completion/population, on the other hand, does not use
additional text. Socher et al. [20] propose a tensor model to predict missing rela-
tions in an existing knowledge base, showing neural networks’ ability of entity-
relation inference. Then, translating embeddings approaches are proposed for
knowledge base completion [7,11,12,14]. Recently, Wang et al. [21] use additional
information to improve knowledge base completion by using textual context.

In this paper, we focus on pure knowledge base completion, i.e., we do not use
additional resources. We combine the state-of-the-art one-hop TransR model [12]
and path augmentation method [14], resulting in the new PTransR variant.

5 Conclusion

In this paper, we augment one-hop TransR model with path modeling method,
resulting in PTransR model. We evaluate PTransR on the task of entity pre-
diction and compare the performance of PTransR with that of previous models.
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Experimental results show that path information is useful in solving the problem
of data sparsity, and that PTransR outperforms previous models, which makes
PTransR the state-of-the-art model in the field that populates knowledge base
without using additional text.
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